Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 77
1.
Radiother Oncol ; : 110290, 2024 Apr 19.
Article En | MEDLINE | ID: mdl-38643807

INTRODUCTION: An increase in plan robustness leads to a higher dose to adjacent organs-at-risk (OARs), and an increased chance of post-treatment toxicities. In contrast, more conformal plans lead to sparing of healthy surrounding tissue at the expense of a higher sensitivity to anatomical changes, requiring costly adaptations. In this study, we assess the trade-off and impact of treatment plan robustness on the adaptation rate. METHOD: Treatment planning was performed for 40 lung cancer patients, each having a planning 4DCT and up to eight weekly repeated 4DCTs (reCTs). For each patient, plans were made with three different levels of robustness based on setup uncertainty of 3, 6 and 9 mm. These plans were robustly re-evaluated on all reCTs to assess whether the clinical constraints were met. RESULTS: For the 3, 6 and 9 mm robustness levels, adaptation rates of 87.5 %, 70.0 % and 57.5 %, respectively, were observed. A mean absolute normal tissue complication probability (NTCP) gain of 2.9 percentage points (pp) was calculated for pneumonitis grade ≥ 2 when transitioning from 9 mm plans to 3 mm plans, 7.6 pp for esophagitis grade ≥ 2, and 2.5 pp for mortality risk 2 years post-treatment. CONCLUSION: The lowered risk of post treatment toxicities at lower robustness levels is clinically relevant but comes at the expense of more treatment adaptations, particularly in cases where meeting our clinical goals is not compromised by having a dose that is more conformal to the target. The trade-off between workload and reduced NTCP needs to be individually assessed.

2.
Phys Med Biol ; 69(9)2024 Apr 22.
Article En | MEDLINE | ID: mdl-38565128

Objective. Radio-opaque markers are recommended for image-guided radiotherapy in liver stereotactic ablative radiotherapy (SABR), but their implantation is invasive. We evaluate in thisin-silicostudy the feasibility of cone-beam computed tomography-guided stereotactic online-adaptive radiotherapy (CBCT-STAR) to propagate the target volumes without implanting radio-opaque markers and assess its consequence on the margin that should be used in that context.Approach. An emulator of a CBCT-STAR-dedicated treatment planning system was used to generate plans for 32 liver SABR patients. Three target volume propagation strategies were compared, analysing the volume difference between the GTVPropagatedand the GTVConventional, the vector lengths between their centres of mass (lCoM), and the 95th percentile of the Hausdorff distance between these two volumes (HD95). These propagation strategies were: (1) structure-guided deformable registration with deformable GTV propagation; (2) rigid registration with rigid GTV propagation; and (3) image-guided deformable registration with rigid GTV propagation. Adaptive margin calculation integrated propagation errors, while interfraction position errors were removed. Scheduled plans (PlanNon-adaptive) and daily-adapted plans (PlanAdaptive) were compared for each treatment fraction.Main results.The image-guided deformable registration with rigid GTV propagation was the best propagation strategy regarding tolCoM(mean: 4.3 +/- 2.1 mm), HD95 (mean 4.8 +/- 3.2 mm) and volume preservation between GTVPropagatedand GTVConventional. This resulted in a planning target volume (PTV) margin increase (+69.1% in volume on average). Online adaptation (PlanAdaptive) reduced the violation rate of the most important dose constraints ('priority 1 constraints', 4.2 versus 0.9%, respectively;p< 0.001) and even improved target volume coverage compared to non-adaptive plans (PlanNon-adaptive).Significance. Markerless CBCT-STAR for liver tumours is feasible using Image-guided deformable registration with rigid GTV propagation. Despite the cost in terms of PTV volumes, daily adaptation reduces constraints violation and restores target volumes coverage.


Cone-Beam Computed Tomography , Feasibility Studies , Liver Neoplasms , Liver , Radiosurgery , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Image-Guided , Humans , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Liver/diagnostic imaging , Liver/radiation effects , Liver Neoplasms/radiotherapy , Liver Neoplasms/diagnostic imaging
3.
Phys Med ; 121: 103368, 2024 May.
Article En | MEDLINE | ID: mdl-38663348

Adaptive radiotherapy is characterized by the use of a daily imaging system, such as CBCT (Cone-Beam Computed Tomography) images to re-optimize the treatment based on the daily anatomy and position of the patient. By systematically re-delineating the Clinical Target Volume (CTV) at each fraction, target delineation uncertainty features a random component instead of a pure systematic. The goal of this work is to identify the random and systematic contributions of the delineation error and compute a new relevant Planning Target Volume (PTV) safety margin. 169 radiotherapy sessions from 10 prostate cancer patients treated on the Varian ETHOS treatment system have been analyzed. Intra-patient and inter-patient delineation variabilities were computed in six directions, by considering the prostate as a rigid, non-rotating volume. By doing so, we were able to directly compare the delineations done by the physicians on daily CBCT images with the initial delineation done on the CT-sim and MRI, and sort them by direction using the polar coordinates of the points. The computed variabilities were then used to compute a PTV margin based on Van Herk margin recipe. The total margin computed with random and systematic delineation uncertainties was of 2.7, 2.4, 5.6, 4.8, 4.9 and 3.6 mm in the left, right, anterior, posterior, cranial and caudal directions, respectively. According to our results, the gain offered by the separation of the delineation uncertainty into systematic and random contributions due to the adaptive delineation process justifies a reduction of the PTV margin down to 3 to 5 mm in every direction.


Cone-Beam Computed Tomography , Prostatic Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Male , Prostatic Neoplasms/radiotherapy , Prostatic Neoplasms/diagnostic imaging , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Uncertainty , Safety
5.
Med Phys ; 51(1): 485-493, 2024 Jan.
Article En | MEDLINE | ID: mdl-37942953

BACKGROUND: Dose calculation and optimization algorithms in proton therapy treatment planning often have high computational requirements regarding time and memory. This can hinder the implementation of efficient workflows in clinics and prevent the use of new, elaborate treatment techniques aiming to improve clinical outcomes like robust optimization, arc, and adaptive proton therapy. PURPOSE: A new method, namely, the beamlet-free algorithm, is presented to address the aforementioned issue by combining Monte Carlo dose calculation and optimization into a single algorithm and omitting the calculation of the time-consuming and costly dose influence matrix. METHODS: The beamlet-free algorithm simulates the dose in proton batches of randomly chosen spots and evaluates their relative impact on the objective function at each iteration. Based on the approximated gradient, the spot weights are then updated and used to generate a new spot probability distribution. The beamlet-free method is compared against a conventional, beamlet-based treatment planning algorithm on a brain case and a prostate case. RESULTS: The beamlet-free algorithm maintained a comparable plan quality while largely reducing the dependence of computation time and memory usage on the number of spots. CONCLUSION: The implementation of a beamlet-free treatment planning algorithm for proton therapy is feasible and capable of achieving treatment plans of comparable quality to conventional methods. Its efficient usage of computational resources and low spot dependence makes it a promising method for large plans, robust optimization, and arc proton therapy.


Proton Therapy , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Monte Carlo Method , Radiotherapy, Intensity-Modulated/methods
6.
Phys Med ; 116: 103178, 2023 Dec.
Article En | MEDLINE | ID: mdl-38000099

PURPOSE: Ethos proposes a template-based automatic dose planning (Etb) for online adaptive radiotherapy. This study evaluates the general performance of Etb for prostate cancer, as well as the ability to generate patient-optimal plans, by comparing it with another state-of-the-art automatic planning method, i.e., deep learning dose prediction followed by dose mimicking (DP + DM). MATERIALS: General performances and capability to produce patient-optimal plan were investigated through two studies: Study-S1 generated plans for 45 patients using our initial Ethos clinical goals template (EG_init), and compared them to manually generated plans (MG). For study-S2, 10 patients which showed poor performances at study-S1 were selected. S2 compared the quality of plans generated with four different methods: 1) Ethos initial template (EG_init_selected), 2) Ethos updated template-based on S1 results (EG_upd_selected), 3) DP + DM, and 4) MG plans. RESULTS: EG_init plans showed satisfactory performance for dose level above 50 Gy: reported mean metrics differences (EG_init minus MG) never exceeded 0.6 %. However, lower dose levels showed loosely optimized metrics, mean differences for V30Gy to rectum and V20Gy to anal canal were of 6.6 % and 13.0 %. EG_init_selected showed amplified differences in V30Gy to rectum and V20Gy to anal canal: 8.5 % and 16.9 %, respectively. These dropped to 5.7 % and 11.5 % for EG_upd_selected plans but strongly increased V60Gy to rectum for 2 patients. DP + DM plans achieved differences of 3.4 % and 4.6 % without compromising any V60Gy. CONCLUSION: General performances of Etb were satisfactory. However, optimizing with template of goals might be limiting for some complex cases. Over our test patients, DP + DM outperformed the Etb approach.


Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated , Male , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Rectum , Pelvis , Anal Canal , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
7.
Med Phys ; 50(10): 6554-6568, 2023 Oct.
Article En | MEDLINE | ID: mdl-37676906

PURPOSE: An accurate estimation of range uncertainties is essential to exploit the potential of proton therapy. According to Paganetti's study, a value of 2.4% (1.5 standard deviation) is currently recommended for planning robust treatments with Monte Carlo dose engines. This number is based on a dominant contribution from the mean excitation energy of tissues. However, it was recently shown that expressing tissues as a mixture of water and "dry" material in the CT calibration process allowed for a significant reduction of this uncertainty. We thus propose an adapted framework for pencil beam scanning robust optimization. First, we move towards a spot-specific range uncertainty (SSRU) determination. Second, we use the water-based formalism to reduce range uncertainties and, potentially, to spare better the organs at risk. METHODS: The stoichiometric calibration was adapted to provide a molecular decomposition (including water) of each voxel of the CT. The SSRU calculation was implemented in MCsquare, a fast Monte Carlo dose engine dedicated to proton therapy. For each spot, a ray-tracing method was used to propagate molecular I-values uncertainties and obtain the corresponding effective range uncertainty. These were then combined with other sources of range uncertainties, according to Paganetti's study of 2012. The method was then assessed on three head-and-neck patients. Two plans were optimized for each patient: the first one with the classical 2.4% flat range uncertainty (FRU), the second one with the variable range uncertainty. Both plans were then compared in terms of target coverage and OAR mean dose reduction. Robustness evaluations were also performed, using the SSRU for both plans in order to simulate errors as realistically as possible. RESULTS: For patient 1, it was found that the median SSRU was 1.04% (1.5 standard deviation), yielding, therefore, a very large reduction from the 2.4% FRU. All three SSRU plans were found to have a very good robustness level at a 90% confidence interval while sparing OAR better than the classical plan. For instance, in nominal cases, average reductions in the mean dose of 15.7, 8.4, and 13.2% were observed in the left parotid, right parotid, and pharyngeal constrictor muscle, respectively. As expected, the classical plans showed a higher but unnecessary level of robustness. CONCLUSIONS: Promising results of the SSRU framework were observed on three head-and-neck cases, and more patients should now be considered. The method could also benefit to other tumor sites and, in the long run, the variable part of the range uncertainty could be generalized to other sources of uncertainty in order to move towards more and more patient-specific treatments.


Head and Neck Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Proton Therapy/methods , Uncertainty , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Intensity-Modulated/methods , Water , Organs at Risk
8.
J Appl Clin Med Phys ; 24(11): e14095, 2023 Nov.
Article En | MEDLINE | ID: mdl-37448193

PURPOSE: Defining dosimetric rules to automatically detect patients requiring adaptive radiotherapy (ART) is not straightforward, and most centres perform ad-hoc ART with no specific protocol. This study aims to propose and analyse different steps to design a protocol for dosimetrically triggered ART of head and neck (H&N) cancer. As a proof-of-concept, the designed protocol was applied to patients treated in TomoTherapy units, using their available software for daily MVCT image and dose accumulation. METHODS: An initial protocol was designed by a multidisciplinary team, with a set of flagging criteria based only on dose-volume metrics, including two action levels: (1) surveillance (orange flag), and (2) immediate verification (red flag). This protocol was adapted to the clinical needs following an iterative process. First, the protocol was applied to 38 H&N patients with daily imaging. Automatic software generated the daily contours, recomputed the daily dose and flagged the dosimetric differences with respect to the planning dose. Second, these results were compared, by a sensitivity/specificity test, to the answers of a physician. Third, the physician, supported by the multidisciplinary team, performed a self-analysis of the provided answers and translated them into mathematical rules in order to upgrade the protocol. The upgraded protocol was applied to different definitions of the target volume (i.e. deformed CTV + 0, 2 and 4 mm), in order to quantify how the number of flags decreases when reducing the CTV-to-PTV margin. RESULTS: The sensitivity of the initial protocol was very low, specifically for the orange flags. The best values were 0.84 for red and 0.15 for orange flags. After the review and upgrade process, the sensitivity of the upgraded protocol increased to 0.96 for red and 0.84 for orange flags. The number of patients flagged per week with the final (upgraded) protocol decreased in median by 26% and 18% for red and orange flags, respectively, when reducing the CTV-to-PTV margin from 4 to 2 mm. This resulted in only one patient flagged at the last fraction for both red and orange flags. CONCLUSION: Our results demonstrate the value of iterative protocol design with retrospective data, and shows the feasibility of automatically-triggered ART using simple dosimetric rules to mimic the physician's decisions. Using a proper target volume definition is important and influences the flagging rate, particularly when decreasing the CTV-to-PTV margin.


Head and Neck Neoplasms , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Retrospective Studies , Radiotherapy, Intensity-Modulated/methods , Head and Neck Neoplasms/radiotherapy , Clinical Protocols
9.
Med Phys ; 50(9): 5784-5792, 2023 Sep.
Article En | MEDLINE | ID: mdl-37439504

BACKGROUND: FLASH proton therapy has the potential to reduce side effects of conventional proton therapy by delivering a high dose of radiation in a very short period of time. However, significant progress is needed in the development of FLASH proton therapy. Increasing the dose rate while maintaining dose conformality may involve the use of advanced beam-shaping technologies and specialized equipment such as 3D patient-specific range modulators, to take advantage of the higher transmission efficiency at the highest energy available. The dose rate is an important factor in FLASH proton therapy, but its definition can vary because of the uneven distribution of the dose over time in pencil-beam scanning (PBS). PURPOSE: Highlight the distinctions, both in terms of concept and numerical values, of the various definitions that can be established for the dose rate in PBS proton therapy. METHODS: In an in silico study, five definitions of the dose rate, namely the PBS dose rate, the percentile dose rate, the maximum percentile dose rate, the average dose rate, and the dose averaged dose rate (DADR) were analyzed first through theoretical comparison, and then applied to a head and neck case. To carry out this study, a treatment plan utilizing a single energy level and requiring the use of a patient-specific range modulator was employed. The dose rate values were compared both locally and by means of dose rate volume histograms (DRVHs). RESULTS: The PBS dose rate, the percentile dose rate, and the maximum percentile dose are definitions that are specifically designed to take into account the time structure of the delivery of a PBS treatment plan. Although they may appear similar, our study shows that they can vary locally by up to 10%. On the other hand, the DADR values were approximately twice as high as those of the PBS, percentile, and maximum percentile dose rates, since the DADR disregards the periods when a voxel does not receive any dose. Finally, the average dose rate can be defined in various ways, as discussed in this paper. The average dose rate is found to be lower by a factor of approximately 1/2 than the PBS, percentile, and maximum percentile dose rates. CONCLUSIONS: We have shown that using different definitions for the dose rate in FLASH proton therapy can lead to variations in calculated values ranging from a few percent to a factor of two. Since the dose rate is a critical parameter in FLASH radiation therapy, it is essential to carefully consider the choice of definition. However, to make an informed decision, additional biological data and models are needed.


Proton Therapy , Humans , Radiotherapy Planning, Computer-Assisted , Clinical Protocols , Radiotherapy Dosage
10.
Sci Rep ; 13(1): 6709, 2023 04 25.
Article En | MEDLINE | ID: mdl-37185591

Particle therapy (PT) used for cancer treatment can spare healthy tissue and reduce treatment toxicity. However, full exploitation of the dosimetric advantages of PT is not yet possible due to range uncertainties, warranting development of range-monitoring techniques. This study proposes a novel range-monitoring technique introducing the yet unexplored concept of simultaneous detection and imaging of fast neutrons and prompt-gamma rays produced in beam-tissue interactions. A quasi-monolithic organic detector array is proposed, and its feasibility for detecting range shifts in the context of proton therapy is explored through Monte Carlo simulations of realistic patient models and detector resolution effects. The results indicate that range shifts of [Formula: see text] can be detected at relatively low proton intensities ([Formula: see text] protons/spot) when spatial information obtained through imaging of both particle species are used simultaneously. This study lays the foundation for multi-particle detection and imaging systems in the context of range verification in PT.


Proton Therapy , Humans , Proton Therapy/methods , Diagnostic Imaging , Protons , Gamma Rays , Radiotherapy Dosage , Monte Carlo Method , Phantoms, Imaging
11.
Med Phys ; 50(10): 6201-6214, 2023 Oct.
Article En | MEDLINE | ID: mdl-37140481

BACKGROUND: In cancer care, determining the most beneficial treatment technique is a key decision affecting the patient's survival and quality of life. Patient selection for proton therapy (PT) over conventional radiotherapy (XT) currently entails comparing manually generated treatment plans, which requires time and expertise. PURPOSE: We developed an automatic and fast tool, AI-PROTIPP (Artificial Intelligence Predictive Radiation Oncology Treatment Indication to Photons/Protons), that assesses quantitatively the benefits of each therapeutic option. Our method uses deep learning (DL) models to directly predict the dose distributions for a given patient for both XT and PT. By using models that estimate the Normal Tissue Complication Probability (NTCP), namely the likelihood of side effects to occur for a specific patient, AI-PROTIPP can propose a treatment selection quickly and automatically. METHODS: A database of 60 patients presenting oropharyngeal cancer, obtained from the Cliniques Universitaires Saint Luc in Belgium, was used in this study. For every patient, a PT plan and an XT plan were generated. The dose distributions were used to train the two dose DL prediction models (one for each modality). The model is based on U-Net architecture, a type of convolutional neural network currently considered as the state of the art for dose prediction models. A NTCP protocol used in the Dutch model-based approach, including grades II and III xerostomia and grades II and III dysphagia, was later applied in order to perform automatic treatment selection for each patient. The networks were trained using a nested cross-validation approach with 11-folds. We set aside three patients in an outer set and each fold consists of 47 patients in training, five in validation and five for testing. This method allowed us to assess our method on 55 patients (five patients per test times the number of folds). RESULTS: The treatment selection based on the DL-predicted doses reached an accuracy of 87.4% for the threshold parameters set by the Health Council of the Netherlands. The selected treatment is directly linked with these threshold parameters as they express the minimal gain brought by the PT treatment for a patient to be indicated to PT. To validate the performance of AI-PROTIPP in other conditions, we modulated these thresholds, and the accuracy was above 81% for all the considered cases. The difference in average cumulative NTCP per patient of predicted and clinical dose distributions is very similar (less than 1% difference). CONCLUSIONS: AI-PROTIPP shows that using DL dose prediction in combination with NTCP models to select PT for patients is feasible and can help to save time by avoiding the generation of treatment plans only used for the comparison. Moreover, DL models are transferable, allowing, in the future, experience to be shared with centers that would not have PT planning expertise.


Deep Learning , Oropharyngeal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Proton Therapy/adverse effects , Proton Therapy/methods , Patient Selection , Artificial Intelligence , Quality of Life , Radiotherapy Planning, Computer-Assisted/methods , Organs at Risk/radiation effects , Oropharyngeal Neoplasms/radiotherapy , Probability , Radiotherapy Dosage , Radiotherapy, Intensity-Modulated/methods
12.
Med Phys ; 50(7): 4480-4490, 2023 Jul.
Article En | MEDLINE | ID: mdl-37029632

PURPOSE: Automated treatment planning strategies are being widely implemented in clinical routines to reduce inter-planner variability, speed up the optimization process, and improve plan quality. This study aims to evaluate the feasibility and quality of intensity-modulated proton therapy (IMPT) plans generated with four different knowledge-based planning (KBP) pipelines fully integrated into a commercial treatment planning system (TPS). MATERIALS/METHODS: A data set containing 60 oropharyngeal cancer patients was split into 11 folds, each containing 47 patients for training, five patients for validation, and five patients for testing. A dose prediction model was trained on each of the folds, resulting in a total of 11 models. Three patients were left out in order to assess if the differences introduced between models were significant. From voxel-based dose predictions, we analyze the two steps that follow the dose prediction: post-processing of the predicted dose and dose mimicking (DM). We focused on the effect of post-processing (PP) or no post-processing (NPP) combined with two different DM algorithms for optimization: the one available in the commercial TPS RayStation (RSM) and a simpler isodose-based mimicking (IBM). Using 55 test patients (five test patients for each model), we evaluated the quality and robustness of the plans generated by the four proposed KBP pipelines (PP-RSM, PP-IBM, NPP-RSM, NPP-IBM). After robust evaluation, dose-volume histogram (DVH) metrics in nominal and worst-case scenarios were compared to those of the manually generated plans. RESULTS: Nominal doses from the four KBP pipelines showed promising results achieving comparable target coverage and improved dose to organs at risk (OARs) compared to the manual plans. However, too optimistic post-processing applied to the dose prediction (i.e. important decrease of the dose to the organs) compromised the robustness of the plans. Even though RSM seemed to partially compensate for the lack of robustness in the PP plans, still 65% of the patients did not achieve the expected robustness levels. NPP-RSM plans seemed to achieve the best trade-off between robustness and OAR sparing. DISCUSSION/CONCLUSIONS: PP and DM strategies are crucial steps to generate acceptable robust and deliverable IMPT plans from ML-predicted doses. Before the clinical implementation of any KBP pipeline, the PP and DM parameters predefined by the commercial TPS need to be modified accordingly with a comprehensive feedback loop in which the robustness of the final dose calculations is evaluated. With the right choice of PP and DM parameters, KBP strategies have the potential to generate IMPT plans within clinically acceptable levels comparable to plans manually generated by dosimetrists.


Oropharyngeal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Proton Therapy/methods , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Oropharyngeal Neoplasms/diagnostic imaging , Oropharyngeal Neoplasms/radiotherapy , Radiotherapy, Intensity-Modulated/methods , Organs at Risk
13.
Med Phys ; 50(7): 4562-4577, 2023 Jul.
Article En | MEDLINE | ID: mdl-36856326

BACKGROUND: The safety and efficacy of proton therapy is currently hampered by range uncertainties. The combination of ultrasound imaging with injectable radiation-sensitive superheated nanodroplets was recently proposed for in vivo range verification. The proton range can be estimated from the distribution of nanodroplet vaporization events, which is stochastically related to the stopping distribution of protons, as nanodroplets are vaporized by protons reaching their maximal LET at the end of their range. PURPOSE: Here, we aim to estimate the range estimation precision of this technique. As for any stochastic measurement, the precision will increase with the sample size, that is, the number of detected vaporizations. Thus, we first develop and validate a model to predict the number of vaporizations, which is then applied to estimate the range verification precision for a set of conditions (droplet size, droplet concentration, and proton beam parameters). METHODS: Starting from the thermal spike theory, we derived a model that predicts the expected number of droplet vaporizations in an irradiated sample as a function of the droplet size, concentration, and number of protons. The model was validated by irradiating phantoms consisting of size-sorted perfluorobutane droplets dispersed in an aqueous matrix. The number of protons was counted with an ionization chamber, and the droplet vaporizations were recorded and counted individually using high frame rate ultrasound imaging. After validation, the range estimate precision was determined for different conditions using a Monte Carlo algorithm. RESULTS: A good agreement between theory and experiments was observed for the number of vaporizations, especially for large (5.8 ± 2.2 µm) and medium (3.5 ± 1.1 µm) sized droplets. The number of events was lower than expected in phantoms with small droplets (2.0 ± 0.7 µm), but still within the same order of magnitude. The inter-phantom variability was considerably larger (up to 30x) than predicted by the model. The validated model was then combined with Monte Carlo simulations, which predicted a theoretical range retrieval precision improving with the square-root of the number of vaporizations, and degrading at high beam energies due to range straggling. For single pencil beams with energies between 70 and 240 MeV, a range verification precision below 1% of the range required perfluorocarbon concentrations in the order of 0.3-2.4 µM. CONCLUSION: We proposed and experimentally validated a model to provide a quick estimate of the number of vaporizations for a given set of conditions (droplet size, droplet concentration, and proton beam parameters). From this model, promising range verification performances were predicted for realistic perfluorocarbon concentrations. These findings are an incentive to move towards preclinical studies, which are critical to assess the achievable droplet distribution in and around the tumor, and hence the in vivo range verification precision.


Proton Therapy , Protons , Volatilization , Proton Therapy/methods , Algorithms , Phantoms, Imaging , Monte Carlo Method , Ultrasonography
14.
Phys Med Biol ; 68(6)2023 03 15.
Article En | MEDLINE | ID: mdl-36821866

Objective. The lateral dose fall-off in proton pencil beam scanning (PBS) technique remains the preferred choice for sparing adjacent organs at risk as opposed to the distal edge due to the proton range uncertainties and potentially high relative biological effectiveness. However, because of the substantial spot size along with the scattering in the air and in the patient, the lateral penumbra in PBS can be degraded. Combining PBS with an aperture can result in a sharper dose fall-off, particularly for shallow targets.Approach. The aim of this work was to characterize the radiation fields produced by collimated and uncollimated 100 and 140 MeV proton beams, using Monte Carlo simulations and measurements with a MiniPIX-Timepix detector. The dose and the linear energy transfer (LET) were then coupled with publishedin silicobiophysical models to elucidate the potential biological effects of collimated and uncollimated fields.Main results. Combining an aperture with PBS reduced the absorbed dose in the lateral fall-off and out-of-field by 60%. However, the results also showed that the absolute frequency-averaged LET (LETF) values increased by a maximum of 3.5 keVµm-1in collimated relative to uncollimated fields, while the dose-averaged LET (LETD) increased by a maximum of 7 keVµm-1. Despite the higher LET values produced by collimated fields, the predicted DNA damage yields remained lower, owing to the large dose reduction.Significance. This work demonstrated the dosimetric advantages of combining an aperture with PBS coupled with lower DNA damage induction. A methodology for calculating dose in water derived from measurements with a silicon-based detector was also presented. This work is the first to demonstrate experimentally the increase in LET caused by combining PBS with aperture, and to assess the potential DNA damage which is the initial step in the cascade of events leading to the majority of radiation-induced biological effects.


Proton Therapy , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy Dosage , Monte Carlo Method
15.
Adv Radiat Oncol ; 8(2): 101124, 2023.
Article En | MEDLINE | ID: mdl-36578276

Purpose: Recently, ultrahigh-dose-rate radiation therapy (UHDR-RT) has emerged as a promising strategy to increase the benefit/risk ratio of external RT. Extensive work is on the way to characterize the physical and biological parameters that control the so-called "Flash" effect. However, this healthy/tumor differential effect is observable in in vivo models, which thereby drastically limits the amount of work that is achievable in a timely manner. Methods and Materials: In this study, zebrafish embryos were used to compare the effect of UHDR irradiation (8-9 kGy/s) to conventional RT dose rate (0.2 Gy/s) with a 68 MeV proton beam. Viability, body length, spine curvature, and pericardial edema were measured 4 days postirradiation. Results: We show that body length is significantly greater after UHDR-RT compared with conventional RT by 180 µm at 30 Gy and 90 µm at 40 Gy, while pericardial edema is only reduced at 30 Gy. No differences were obtained in terms of survival or spine curvature. Conclusions: Zebrafish embryo length appears as a robust endpoint, and we anticipate that this model will substantially fasten the study of UHDR proton-beam parameters necessary for "Flash."

16.
Med Phys ; 50(1): 410-423, 2023 Jan.
Article En | MEDLINE | ID: mdl-36354283

PURPOSE: This study demonstrates how a novel probabilistic clinical target volume (CTV) concept-the clinical target distribution (CTD)-can be used to navigate the trade-off between target coverage and organ sparing with a semi-interactive treatment planning approach. METHODS: Two probabilistic treatment planning methods are presented that use tumor probabilities to balance tumor control with organ-at-risk (OAR) sparing. The first method explores OAR dose reduction by systematically discarding x % $x\%$ of CTD voxels with an unfavorable dose-to-probability ratio from the minimum dose coverage objective. The second method sequentially expands the target volume from the GTV edge, calculating the CTD coverage versus OAR sparing trade-off after dosing each expansion. Each planning method leads to estimated levels of tumor control under specific statistical models of tumor infiltration: an independent tumor islets model and contiguous circumferential tumor growth model. The methods are illustrated by creating proton therapy treatment plans for two glioblastoma patients with the clinical goal of sparing the hippocampus and brainstem. For probabilistic plan evaluation, the concept of a dose-expected-volume histogram is introduced, which plots the dose to the expected tumor volume ⟨ v ⟩ $\langle v \rangle$ considering tumor probabilities. RESULTS: Both probabilistic planning approaches generate a library of treatment plans to interactively navigate the planning trade-offs. In the first probabilistic approach, a significant reduction of hippocampus dose could be achieved by excluding merely 1% of CTD voxels without compromising expected tumor control probability (TCP) or CTD coverage: the hippocampus D 2 % $D_{2\%}$ dose reduces with 9.5 and 5.3 Gy for Patient 1 and 2, while the TCP loss remains below 1%. Moreover, discarding up to 10% of the CTD voxels does not significantly diminish the expected CTD dose, even though evaluation with a binary volume suggests poor CTD coverage. In the second probabilistic approach, the expected CTD D ⟨ 98 % ⟩ $D_{\langle 98\%\rangle }$ and TCP depend more strongly on the extent of the high-dose region: the target volume margin cannot be reduced by more than 2 mm if one aims at keeping the expected CTD D ⟨ 98 % ⟩ $D_{\langle 98\%\rangle }$ loss and TCP loss under 1 Gy and 2%, respectively. Therefore, there is less potential for improved OAR sparing without compromising TCP or expected CTD coverage. CONCLUSIONS: This study proposes and implements treatment planning strategies to explore trade-offs using tumor probabilities.


Brain Neoplasms , Radiotherapy Planning, Computer-Assisted , Humans , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Models, Statistical , Probability
17.
J Neurosurg Sci ; 67(1): 55-65, 2023 Feb.
Article En | MEDLINE | ID: mdl-33056947

BACKGROUND: In the context of high-grade gliomas (HGGs), very little evidence is available concerning the optimal radiotherapy (RT) schedule to be used in radioimmunotherapy combinations. This studied was aimed at shedding new light in this field by analyzing the effects of RT dose escalation and dose fractionation on the tumor microenvironment of experimental HGGs. METHODS: Neurospheres (NS) CT-2A HGG-bearing C57BL/6 mice were treated with stereotactic RT. For dose-escalation experiments, mice received 2, 4 or 8 Gy as single administrations. For dose-fractionation experiments, mice received 4 Gy as a single fraction or multiple (1.33x3 Gy) fractions. The impact of the RT schedule on murine survival and tumor immunity was evaluated. Modifications of glioma stem cells (GSCs), tumor vasculature and tumor cell replication were also assessed. RESULTS: RT dose-escalation was associated with an improved immune profile, with higher CD8+ T cells and CD8+ T cells/regulatory T cells (Tregs) ratio (P=0.0003 and P=0.0022, respectively) and lower total tumor associated microglia/macrophages (TAMs), M2 TAMs and monocytic myeloid derived suppressor cells (mMDSCs) (P=0.0011, P=0.0024 and P<0.0001, respectively). The progressive increase of RT dosages prolonged survival (P<0.0001) and reduced tumor vasculature (P=0.069), tumor cell proliferation (P<0.0001) and the amount of GSCs (P=0.0132 or lower). Compared to the unfractionated regimen, RT dose-fractionation negatively affected tumor immunity by inducing higher total TAMs, M2 TAMs and mMDSCs (P=0.0051, P=0.0036 and P=0.0436, respectively). Fractionation also induced a shorter survival (P=0.0078), a higher amount of GSCs (P=0.0015 or lower) and a higher degree of tumor cell proliferation (P=0.0003). CONCLUSIONS: This study demonstrates that RT dosage and fractionation significantly influence survival, tumor immunity and GSCs in experimental HGGs. These findings should be taken into account when aiming at designing more synergistic and effective radio-immunotherapy combinations.


Glioma , Tumor Microenvironment , Animals , Mice , CD8-Positive T-Lymphocytes/pathology , Mice, Inbred C57BL , Glioma/pathology , Neoplastic Stem Cells/pathology , Radiation Dosage
18.
Phys Med Biol ; 67(24)2022 12 13.
Article En | MEDLINE | ID: mdl-36541505

Objective. Proton arc therapy (PAT) is a new delivery technique that exploits the continuous rotation of the gantry to distribute the therapeutic dose over many angular windows instead of using a few static fields, as in conventional (intensity-modulated) proton therapy. Although coming along with many potential clinical and dosimetric benefits, PAT has also raised a new optimization challenge. In addition to the dosimetric goals, the beam delivery time (BDT) needs to be considered in the objective function. Considering this bi-objective formulation, the task of finding a good compromise with appropriate weighting factors can turn out to be cumbersome.Approach. We have computed Pareto-optimal plans for three disease sites: a brain, a lung, and a liver, following a method of iteratively choosing weight vectors to approximate the Pareto front with few points. Mixed-integer programming (MIP) was selected to state the bi-criteria PAT problem and to find Pareto optimal points with a suited solver.Main results. The trade-offs between plan quality and beam irradiation time (staticBDT) are investigated by inspecting three plans from the Pareto front. The latter are carefully picked to demonstrate significant differences in dose distribution and delivery time depending on their location on the frontier. The results were benchmarked against IMPT and SPArc plans showing the strength of degrees of freedom coming along with MIP optimization.Significance. This paper presents for the first time the application of bi-criteria optimization to the PAT problem, which eventually permits the planners to select the best treatment strategy according to the patient conditions and clinical resources available.


Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Proton Therapy/methods , Protons , Radiotherapy Planning, Computer-Assisted/methods , Radiometry , Radiotherapy, Intensity-Modulated/methods , Radiotherapy Dosage
19.
Radiother Oncol ; 176: 101-107, 2022 11.
Article En | MEDLINE | ID: mdl-36167194

BACKGROUND AND PURPOSE: This study aims to investigate how accurate our deep learning (DL) dose prediction models for intensity modulated radiotherapy (IMRT) and pencil beam scanning (PBS) treatments, when chained with normal tissue complication probability (NTCP) models, are at identifying esophageal cancer patients who are at high risk of toxicity and should be switched to proton therapy (PT). MATERIALS AND METHODS: Two U-Net were created, for photon (XT) and proton (PT) plans, respectively. To estimate the dose distribution for each patient, they were trained on a database of 40 uniformly planned patients using cross validation and a circulating test set. These models were combined with a NTCP model for postoperative pulmonary complications. The NTCP model used the mean lung dose, age, histology type, and body mass index as predicting variables. The treatment choice is then done by using a ΔNTCP threshold between XT and PT plans. Patients with ΔNTCP ≥ 10% were referred to PT. RESULTS: Our DL models succeed in predicting dose distributions with a mean error on the mean dose to the lungs (MLD) of 1.14 ± 0.93% for XT and 0.66 ± 0.48% for PT. The complete automated workflow (DL chained with NTCP) achieved 100% accuracy in patient referral. The average residual (ΔNTCP ground truth - ΔNTCP predicted) is 1.43 ± 1.49%. CONCLUSION: This study evaluates our DL dose prediction models in a broader patient referral context and demonstrates their ability to support clinical decisions.


Decision Support Systems, Clinical , Deep Learning , Esophageal Neoplasms , Proton Therapy , Radiotherapy, Intensity-Modulated , Humans , Radiotherapy Planning, Computer-Assisted , Radiotherapy, Intensity-Modulated/adverse effects , Proton Therapy/adverse effects , Probability , Esophageal Neoplasms/radiotherapy , Radiotherapy Dosage
20.
Phys Med Biol ; 67(19)2022 09 30.
Article En | MEDLINE | ID: mdl-36041437

Objective.Protons offer a more conformal dose delivery compared to photons, yet they are sensitive to anatomical changes over the course of treatment. To minimize range uncertainties due to anatomical variations, a new CT acquisition at every treatment session would be paramount to enable daily dose calculation and subsequent plan adaptation. However, the series of CT scans results in an additional accumulated patient dose. Reducing CT radiation dose and thereby decreasing the potential risk of radiation exposure to patients is desirable, however, lowering the CT dose results in a lower signal-to-noise ratio and therefore in a reduced quality image. We hypothesized that the signal-to-noise ratio provided by conventional CT protocols is higher than needed for proton dose distribution estimation. In this study, we aim to investigate the effect of CT imaging dose reduction on proton therapy dose calculations and plan optimization.Approach.To verify our hypothesis, a CT dose reduction simulation tool has been developed and validated to simulate lower-dose CT scans from an existing standard-dose scan. The simulated lower-dose CTs were then used for proton dose calculation and plan optimization and the results were compared with those of the standard-dose scan. The same strategy was adopted to investigate the effect of CT dose reduction on water equivalent thickness (WET) calculation to quantify CT noise accumulation during integration along the beam.Main results.The similarity between the dose distributions acquired from the low-dose and standard-dose CTs was evaluated by the dose-volume histogram and the 3D Gamma analysis. The results on an anthropomorphic head phantom and three patient cases indicate that CT imaging dose reduction up to 90% does not have a significant effect on proton dose calculation and plan optimization. The relative error was employed to evaluate the similarity between WET maps and was found to be less than 1% after reducing the CT imaging dose by 90%.Significance.The results suggest the possibility of using low-dose CT for proton therapy dose estimation, since the dose distributions acquired from the standard-dose and low-dose CTs are clinically equivalent.


Proton Therapy , Humans , Phantoms, Imaging , Proton Therapy/methods , Protons , Radiotherapy Dosage , Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed , Water
...